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EV AFFECTS VARIOUS ASPECTS OF POWER SYSTEM
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Reduce peak load
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Whatis V2G?

Why should you care about

How does V2G work?
The benefits and
drawbacks of V2G
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mainstream?
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OPTIMIZE RENEWABLE ENERGY SOURCE

== Information and control Grid '
—* Energy
Load of
building Transformer Gaps in power supply can be bridged with EVs
A
¥ T ACBUS Battery Electric
! } Vehicle (BEV) TveE
AC/DC
DC c ' DODC | AC e |i-directional
Icon\'crler C converter . .
KL= I S Hybrid Electric Wall box
LY ' Y DC BUS i
L : Vehicles (HEV) i AG < 2ok
y . Electric 8 — 10 hours
' mp( Vehicles
' | Type _ _ Public slow
Cuggiadalyorid AC/DC < 22 — 50kW
Electric Vehicles
(PHEV) 2 — 3 hours
Fuel Cell Electric Public fast
Vehicles (FCEVs) 50 — 350kW
<1 hours
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ELECTRIC VEHICLES - THE FLEXIBILITY OF THE MODERN GRID

4 Artificial intelligence Implementation Leve Coordinated Y. \
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CI— Data analysis Electric vehicle market _ _
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Power System integrated Power Electronics el BESS chortt
shortterm Voltage boosters Back-up
Grid forming inverter Inertia Distribution DR oiTc generation
Cobng
n h é Grid feeding inverter Voltage frequency control A
g JB Local Flexibility for Flexibility Flexibility
moi Energy Storage Technology Power Voltage I —
Types of storage Support policy \—/
Key role Ancillary » Conventional grid is not designed with the
e« o\ participation of EV+RE
\ Distributed Renewable Energy « The purpose of EVs is transportation, but
“' .
w Increased connectivity Demand Side Management most of the time (95%) the EVs park
\ capacity o « Fundamentally, RE is inflexible, EVs are
\\\ Smart meter Increased flexibility hi gth flexible
\ Blockchain Technology * Flexibility of EVs is demonstrated in the
Data security Market trading ability to charge/discharge at dlfferetnt times
within the rated capacity limit E = [ p(t)dt
- VPP Managing Control Monitoring 31
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EV INTEGRATED GRID ISSUES

___.)/\..

GOODMOTIVE

O Change the load curve

M)

) Grid congestion management

O Avoid distribution grid overload

O Avoid redundancy of RE sources

O Ancillary Services

O Frequency voltage control

“Behind the metter” services

Power outages, voltage sags & short-term
overvoltage, long-term overvoltage,
harmonies, voltage pulses, frequency
fluctuations, ...

Lack of control and unreasonable
coordination at charging time with load
graph will increase power loss, increase
voltage deviation and power quality issues

The share of RE is still low, if EVs are used

by fossil sources, the emissions reduction
are not high.
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SMART (DIS)CHARGING ENHANCE V2G

Enabling explicit
% Data exchange Smart . Demand Response g
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1 - Limit demand charges |
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l Charge Point Control management :-: HEEEEEEEENEEEESEE
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M - User Interface O - Improved forecasting | ” I'
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integration costs

<  Decide when and how EV charging occurs < 1. Battery System and Charging Management
<  Collect EV-specific meter data % 2.1 On-board Charger, 2.2 Off-board Charger
< Apply specific rates for EV charging % 3. Power quality at power grid connection point
< Implement demand response (DR) programs % 4.1 Communication between vehicle and charging station, 4.2
<  Engage consumers with information on EV Communication between charging station and central system,
charging status and bill impacts 4.3 Communication grid connection point
+» 5.1 Solar Power, 5.2 Wind Power

Collect data for greenhouse gas credits
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ELECTRICITY PRICING BUSINESS MODELS FOR EV CHARGING STATIONS

EFFECT OF ELECTRICITY PRICING/TARIFFS
“TIME-OF-USE (TOU)" tariffs “DYNAMIC” tariffs
’ \ (T B =gk

B Lowest cost time to charge an EV B Highest cost time to charge an EV Monthly Time-of-Use Business

Subscription Rate EV Rate
Charge

(i) Real-time prices (RTP)

(ii) Critical peak prices (CPP)

(iii) Peak time rebates
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INTEGRATED FUNCTIONS FOR V2G

\
' Robust, reliable, and secure connectivity (HAN,
NAN

Integration of EV charging infrastructure into

demand side management (DSM) system
\

Provision of distributed intelligence

\
‘ Provision of a separate meter at the EVSE
I

integrated into AMI

Integration of EV charging infrastructure

into DR system
/

Integration of EV charging infrastructure into
distributed automation (DA) system

Coordination with renewable energy-based
generation
Vs

Scheduled
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CASE STUDY 1:
V2G: OPTIMIZE RESIDENTIAL ENERGY CONSUMPTION WITH EV (DIS)CHARGING
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CASE STUDY 2: COORDINATION OF MULTIPLE PLUG-IN EV CHARGING IN SMART GRIDS
USING REAL-TIME SMART LOAD MANAGEMENT (RT-SLM) ALGORITHM
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CASE STUDY 2: COORDINATION OF MULTIPLE PLUG-IN EV CHARGING IN SMART GRIDS
USING REAL-TIME SMART LOAD MANAGEMENT (RT-SLM) ALGORITHM
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CASE STUDY 3:

EV CHARGING MANAGEMENT IN PV INTEGRATED DISTRIBUTION GRID REGARDING DSM

N
With consideration of peak reduction, variance minimization based on dynamic
pricing schemes )

Objectives N
An 8-node residential grid is simulated in 24 hours in 4 scenarios
J
This act as an input for the residents and utility to balance the benefits ]
La 7 8
PEVs connected to nodes 2,3 and 8 | S
PV systems connected to nodes 2,3 and 8
| ] EV3
[
Grid 0 1 2 3 i 5 PV 3
l_ y y l I_l l_ Source: V.N.H. Giang, 2021
PY1 H EV1 PVv2 H EV2
j%m: Toward . Renewable Energy
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CASE STUDY 3:

EV CHARGING MANAGEMENT IN PV INTEGRATED DISTRIBUTION GRID REGARDING DSM

Ki N
xlgl‘:_i?imax( Z Z Statekka + Z Z Pbaseloadk Z Z generatwnk)
k=1n=1

=1n=1

state,ic the plugging state of the of each connected PEV i at discretized time step k
T the duration of time steps (in hours)
x}; the charging/ discharging rate of each connected PEV i at time step k (in kW)
Pipsiassty the energy demand of the baseload at node n at time step k (in kWh)
PVgenemtionZ" the energy production of the PV system at node n at time step k (in kWh)
] total number of connected PEVs
Kt total number of time steps
N total number of nodes in the distribution grid

MODEL 1: M|n|m|ze Ioad peaks

Kt N Kt

xllnelg(livar(z Z statekxkr + Z Z Pbaseloadk Z Z PVgenemtwnR) X(1-9)+ 9 Z Z tarLffskstatekxk‘r

=1n=1 k=1m=1 i=1k=

state,‘; the plugging state of the of each connected PEV i at discretized time step k
T the duration of time steps (in hours)
x,ic the charging/ discharging rate of each connected PEV i at time step k (in kW)
pbaseload; the energy demand of the baseload at node n at time step k (in kWh)
PVgenerationin the energy production of the PV system m at time step k (in kWh)
] the total number of connected PEVs
Kt the total number of time steps
N the total number of nodes in the distribution grid
tarif fs; the tariff at time step k (in VND/kWh)
) coefficient for weighted average (9 < 1)

MODEL 2: Minimize voltage variance, lower the costs

On the
charger

On the

voltage
levels

On the

plugging
states

Constraints
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CASE STUDY 3:
EV CHARGING MANAGEMENT IN PV INTEGRATED DISTRIBUTION GRID REGARDING DSM

§1 > UHS-M |
Tim”eg(hour) Timﬂez(hour)
24-hour residential load profile Node voltage profiles of baseload
! '50 ; : ‘\‘2 ‘ 26 2‘4 Ti mz(h our)
Time (hour) . .
Calculated RTP based on locational marginal
s TOU electricity tariffs prices (LMP) on 7t August 2021 in Vietnam
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CASE STUDY 3:
EV CHARGING MANAGEMENT IN PV INTEGRATED DISTRIBUTION GRID REGARDING DSM

Scenario 1: Uncontrolled charging scheme, no V2G is applied

\
Scenario 2: Model 1 is applied to minimize peak demand, V2G is
applied
|
Scenario 3: Model 2 is applied to minimize the variance of the load
profile and TOU charging cost, V2G is applied

[

Scenario 4: Model 2 is applied to minimize the variance of the load profile
and RTP charging cost, V2G is applied

N\

TOOREHAB
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CASE STUDY 3:
EV CHARGING MANAGEMENT IN PV INTEGRATED DISTRIBUTION GRID REGARDING DSM
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§45 41.16 40.94 41.36
1.19 S 40
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o 20
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& 10
The peak value and variance of each evalualing scenario = s I
0

Scenario1 Scenario2 Scenario4

mPEV1 (KVND) ®PEV2 (kVND) ®PEV3 (KVND)

The charging costs based on RTP of Scenario #1, #2 and #4
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CONCLUSION

EV era comes

EV brings and solves
power system
problem by V2G

EV accompanied by
RE
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